Commercial Site Assessment™ Tier II

Prepared for: Harmony East Condo Assoc.

13674 Brass Parkway Rosemount, MN 55068

2021 Season

763.434.5414 twincities@conservairrigation.com conservairrigation.com

Controller Systems					
#1					
#2					

Commercial Site Assessment[™]

Date of Tier II CSA:	August 5 th , 2021
Certified Technician:	Russ Jundt, CLIA, CIT

Irrigated Acres:	System #1: 3.06 acres
	System #2: ~4.6 acres

Irrigated ft^2 : System #1: 133,268 ft² System #2: ~200,482 ft²

Harmony East Condo Assoc Audit Observations

Harmony East has 2 water sources and 2 controllers with 44 zones total.

- **System #1:** Hunter I-Core, 15 zones, Hunter Rain Sensor (bypassed)
 - Schedule A: Start-10pm, Days- Sun, Mon, Wed, Thur, Sat.
 - 30 mins rotors, 10 mins sprays
- System #2: Hunter ICC, 29 zones, Hunter Solar Sync (region is wrong)
 Schedule: N/A

Harmony East general system observations

Controller and Sensor:

Issue #1: Controller for system one is a basic "set and forget" controller

Solution #1: Upgrade controller to a smart controller with a hotspot for weather data. Smart controllers manage water use based on weather data and plant need (evapotranspiration). Reducing overall use and saving water.

Issue #2: Controller for system two is a smart controller via use of Hunter Solar Sync. However, the Solar Sync is not setup correctly and is using the wrong region's weather data. More importantly, the controller display is not functional and apparently (after talking to the irrigation contractor) it hasn't worked for years. Having no display makes it impossible to see how the controller program is operating the system, nor does it allow anyone to work on the controller or know what is working properly. <u>Because of this, we were not able to do the audit for this controller/system #2.</u>

Solution #2: Upgrade controller to a Hunter HCC smart controller with a hotspot for weather data and add new onsite rain sensor. Smart controllers manage water use based on weather data and plant need (evapotranspiration). Reducing overall use and saving water.

Issue #3: Rain sensor for system one is under thick trees and will not detect rain in its location.

Solution #3: When upgrading controller, install new wireless rain sensor that can be installed in a better location.

Harmon East: Zone by Zone (ONLY SYSTEM/CONTROLLER 1)

Issue #4: Of the 277 rotors, 31 of them are either, leaking, broken, or not turning, etc.

Solution #4: Replace 31 broken or defective rotors.

Issue #5: There are also areas that are lack proper coverage or have heads in unmaintained areas. This may be due to landscape aging/changing, poor design, etc.

Solution #5: Move heads for better coverage, add heads where there is a gap in coverage, or cap/eliminate heads that are not needed.

Issue #6: There are three zones (2, 9, and 11) with mixed sprinkler types (rotors and sprays) on the same zone. Sprays apply approximately two to three times as much water in their areas as rotors, causing over watering/wasted water.

Solution #6: Each of the three zones needs a different solution.

- Zone 2 only has one rotor tied in so we would change the rotor to a spray head and possibly add a head or two if coverage needs them.
- Zone 9 has 10 rotors and 23 sprays so the ideal solution would be to change the rotors to spray heads and convert all nozzles to MP rotary nozzles to maintain proper coverage.
- Zone 11 only has one spray head with 13 rotors, so the easiest solution is to change the spray nozzle to an MP rotary nozzle.

Issue #7: The pressure for zones two and three is high and causing fogging/misting from the spray heads. This affect from high pressure is a direct loss of water to the air/evaporation and is a waste of water.

Solution #7: Install pressure-regulated heads to reduce water waste due to "misting" from high pressure. I would recommend doing this on head replacements moving forward.

Issue #8: On System #1, the discharge pipe connection from the pump is leaking.

Solution #8: Clean connection and apply new waterproof tape and/or paste to connection. If threads are the problem, replace the fitting.

Water Rates:

Meter Reading Interval:	Monthly X Quarterly	Other
Units Measured As:	X 1000 gallons	
Converted Units:	X 1 unit = 1000 gallons	

WATER RATES	Irrigation Metered System
Price per unit (per 1,000 gals)	\$3.80
Threshold per quarter	Irrigation Metered System
Sewer Rate per unit (if unmetered):	None

Historical Water Usage:

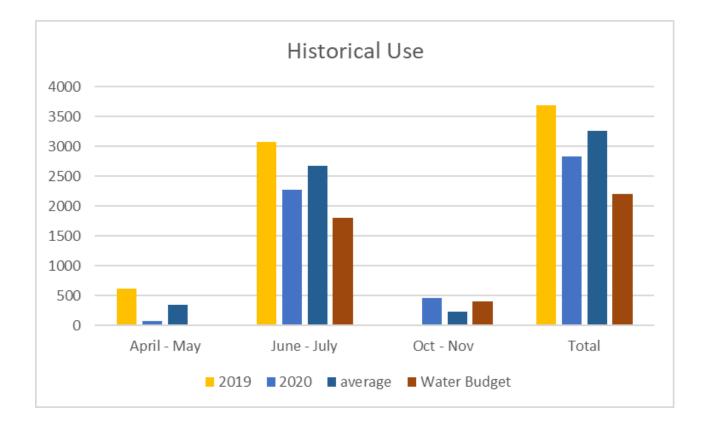
Water Source #1

Water Source #2**

Year	Annual Water Usage (gallons)	Annual Water Cost*
2020	1,557,000	\$5,917
2021	1,988,000	\$7,582
2 Year		
Average	1,772,500	\$6,736

*Based on current Water Rates for best year to year comparison.

**Water Source #2 is operational, but the controller's display is broken. There is no way to see how the controller is programed to operate the system. As such, this water usage data is the only information for water source #2 that we were able to document.


Plant Water Requirement (ET Data):

Plant Material Need: 1,658,524 gallons Cost: \$6,302.39/year

 $Eff \% = \frac{water need}{water use}$ $Eff \% = \frac{1,658,524}{3,158,000} = 52.52\%$

EPA Standard = 75% Efficiency

Month	April-May Reading	June-July Reading	Oct-Nov Reading	Total(gal)
2020 Usage	81,000	2,276,000	470,000	2,827,000
2019 Usage	614,000	3,075,000	0	3,689,000
Avg Usage	347,500	2,675,500	235,000	3,158,000
Water Budget	0	1,811,590	399,770	2,211,365

System Components:

Water Sou	irce				Deficiency?			
	Locatio	on	13674 Brass	Parkway, Rosemount, MN 55068				
	Source		City Feed					
	Anti-sy	phon						
		Brand	k	Wilkins/Zurn (975XL) RPZ				
		Size		2″				
		Inspe	ction Date	N/A				
		Visua	l Inspection	Good				
	Deduct	t Mete	er					
		Brand	k	Sensus				
		Size		1.5″				
		Serial	Number	57992348				
		Readi	ing	27,977,283 Gallons				
#1		Visua	l Inspection	Good				
	Booste	r Pum	р					
		Brand	ł	Myers - MFG#7968967				
		Size		2HP				
				115/230 Volt				
		Volt/		22.6/11.3 AMP				
		Visua	l Inspection	Top discharge connection leaking				
	Not	es:	No Master Va	alve.				

Water Sou	rce				Deficiency?			
	Locatio	on	13463 Brick F	Path, Rosemount, MN 55068				
	Source	2	3" City Feed					
	Anti-sy	/phon			-			
		Brand	k	Wilkins/Zurn (975XL) RPZ				
		Size		2"				
		Inspe	ction Date	N/A				
		Visua	l Inspection	Good				
	Deduc	t Mete	er					
		Brand	b	Sensus				
		Size		1.5″				
		Seria	Number	60929283				
		Read	ing	34,277,877 Gallons				
#2		Visua	l Inspection	Good				
	Booste	er Pum	r Pump					
		Brand	b	Flint & Walling				
		Size		1.5 HP				
		Volt/	AMP	-				
		Visua	l Inspection	Ok				
	Not	es:	No Master Va	ılve.				

Recommend Critical Repairs and Adjustments: Controller #1

	Zones															
Head Type	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Total # Rotors	34	1		23	28	31	18	13	10	20	13	9	17	30	30	277
Total # Sprays		45	30						23		1					99
Rotating Nozzles																
Drip																
Mixed Head Types		х							Х		х					3
Repairs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Damaged Rotors	9			2	3	4	4		1	3		1		2	2	31
Damaged 4" Sprays																
Damaged 6" Sprays																
Damaged High Pop Rotor																
Damaged High Pop Spray																
Line Leaks																
Wrong Nozzle r=rotor s=spray									23 S		1 S					24 S
Damaged Spray Head Nozzles																
Raise/Straighten Heads																
Design																
Improvements	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Move Head for better coverage					1					4			1		2	8
Add Head for better coverage					4 MP 5 R	12 MP	4 MP	4 MP			5 R	2 R	2 R	2 MP	3 R	26 MP 17 R
Cap Head	1															1
Convert Rotors to Spray		1							10							11

Critical Repairs and Adjustments

Repairs	Price (each)	Count		Total	
R1.) Installed 5" rotor (Issue #4)	\$ 65.00	31	\$	2,015.00	
R2.) Controller #2: Hunter HCC (29					
zones) (Issue #2)	\$ 1,475.00	1	\$	1,475.00	
R3.) System #1 Pump connection leak fix					
(Issue #8)	\$ \$30.00	1	\$	30.00	
			\$	3,520.00	

Design Improvements

Design Improvements	Price (each)	Count		Total
D1.) Cap unnecessary heads (Issue #5)	\$ 30.00	1	\$	30.00
D2.) Add a Head (Issue #5)	\$ 150.00	43	\$	6,450.00
D3.) Move head for better coverage/out				
of weeds (Issue #5)	\$ 150.00	8	\$	1,200.00
D4.) Replace spray nozzle with rotary nozzle (matching precipitation rate)				
(Issue #6)	\$ 20.00	24	\$	480.00
			\$	8,160.00

Recommended Efficiency Upgrades

System Efficiency and Design Upgrades	Price (each)	Count	Total	
U1.) Controller #1: Hunter HPC (15				
zones). (Issue #1)	\$ 825.00	1	\$ 825.00	
U2.) Install Wireless rain sensor				
(systems 1 & 2) (Issue #3)	\$ 150.00	2	\$ 300.00	
U3.) Hot spots for internet access to get	\$ 30 for unit &		\$ 60 for unit &	
weather data for controllers. (Price	\$ 50 per month		\$ 100 per month	
depends on provider) (Issue #1 & #2)	(estimated)	2	(estimated)	
U4.) Replace remaining heads after				
repairs with pressure-regulated heads.				
(Issue #7)	\$ 65.00	75	\$ 4,875.00	
			\$ 6,060.00 &	
			\$ 100 per month	
			(estimated)	

In summary, completing the recommended critical repairs and upgrades will result in substantially more efficient water usage and healthier plant material.

Next Steps:

- □ Fix repair issues
- □ Move heads to a better position
- Change various nozzles and heads for better coverage and distribution
- □ Cap unneeded heads
- Add heads/change heads in areas that are lacking proper coverage
- Upgrade/replace controllers with smart/weather-based controllers with rain sensors on site
- Address high pressures by installing pressure-regulated heads going forward
- □ Annually maintain (including adjustments) & monitor property
- Convert open areas, especially hills, to native areas.
- □ Audit System #2 once controller is replaced